3.309 \(\int \frac{1}{x^4 (d+e x^2) (a+b x^2+c x^4)} \, dx\)

Optimal. Leaf size=348 \[ \frac{\sqrt{c} \left (\frac{3 a b c e-2 a c^2 d+b^2 c d+b^3 (-e)}{\sqrt{b^2-4 a c}}+a c e+b^2 (-e)+b c d\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{\sqrt{2} a^2 \sqrt{b-\sqrt{b^2-4 a c}} \left (a e^2-b d e+c d^2\right )}+\frac{\sqrt{c} \left (-\frac{3 a b c e-2 a c^2 d+b^2 c d+b^3 (-e)}{\sqrt{b^2-4 a c}}+a c e+b^2 (-e)+b c d\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{\sqrt{b^2-4 a c}+b}}\right )}{\sqrt{2} a^2 \sqrt{\sqrt{b^2-4 a c}+b} \left (a e^2-b d e+c d^2\right )}+\frac{a e+b d}{a^2 d^2 x}+\frac{e^{7/2} \tan ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d}}\right )}{d^{5/2} \left (a e^2-b d e+c d^2\right )}-\frac{1}{3 a d x^3} \]

[Out]

-1/(3*a*d*x^3) + (b*d + a*e)/(a^2*d^2*x) + (Sqrt[c]*(b*c*d - b^2*e + a*c*e + (b^2*c*d - 2*a*c^2*d - b^3*e + 3*
a*b*c*e)/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b - Sqrt[b^2 - 4*a*c]]])/(Sqrt[2]*a^2*Sqrt[b - Sqr
t[b^2 - 4*a*c]]*(c*d^2 - b*d*e + a*e^2)) + (Sqrt[c]*(b*c*d - b^2*e + a*c*e - (b^2*c*d - 2*a*c^2*d - b^3*e + 3*
a*b*c*e)/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/(Sqrt[2]*a^2*Sqrt[b + Sqr
t[b^2 - 4*a*c]]*(c*d^2 - b*d*e + a*e^2)) + (e^(7/2)*ArcTan[(Sqrt[e]*x)/Sqrt[d]])/(d^(5/2)*(c*d^2 - b*d*e + a*e
^2))

________________________________________________________________________________________

Rubi [A]  time = 1.5494, antiderivative size = 348, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 3, integrand size = 27, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.111, Rules used = {1287, 205, 1166} \[ \frac{\sqrt{c} \left (\frac{3 a b c e-2 a c^2 d+b^2 c d+b^3 (-e)}{\sqrt{b^2-4 a c}}+a c e+b^2 (-e)+b c d\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{\sqrt{2} a^2 \sqrt{b-\sqrt{b^2-4 a c}} \left (a e^2-b d e+c d^2\right )}+\frac{\sqrt{c} \left (-\frac{3 a b c e-2 a c^2 d+b^2 c d+b^3 (-e)}{\sqrt{b^2-4 a c}}+a c e+b^2 (-e)+b c d\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{\sqrt{b^2-4 a c}+b}}\right )}{\sqrt{2} a^2 \sqrt{\sqrt{b^2-4 a c}+b} \left (a e^2-b d e+c d^2\right )}+\frac{a e+b d}{a^2 d^2 x}+\frac{e^{7/2} \tan ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d}}\right )}{d^{5/2} \left (a e^2-b d e+c d^2\right )}-\frac{1}{3 a d x^3} \]

Antiderivative was successfully verified.

[In]

Int[1/(x^4*(d + e*x^2)*(a + b*x^2 + c*x^4)),x]

[Out]

-1/(3*a*d*x^3) + (b*d + a*e)/(a^2*d^2*x) + (Sqrt[c]*(b*c*d - b^2*e + a*c*e + (b^2*c*d - 2*a*c^2*d - b^3*e + 3*
a*b*c*e)/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b - Sqrt[b^2 - 4*a*c]]])/(Sqrt[2]*a^2*Sqrt[b - Sqr
t[b^2 - 4*a*c]]*(c*d^2 - b*d*e + a*e^2)) + (Sqrt[c]*(b*c*d - b^2*e + a*c*e - (b^2*c*d - 2*a*c^2*d - b^3*e + 3*
a*b*c*e)/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/(Sqrt[2]*a^2*Sqrt[b + Sqr
t[b^2 - 4*a*c]]*(c*d^2 - b*d*e + a*e^2)) + (e^(7/2)*ArcTan[(Sqrt[e]*x)/Sqrt[d]])/(d^(5/2)*(c*d^2 - b*d*e + a*e
^2))

Rule 1287

Int[(((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(q_.))/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> Int[Ex
pandIntegrand[((f*x)^m*(d + e*x^2)^q)/(a + b*x^2 + c*x^4), x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b^
2 - 4*a*c, 0] && IntegerQ[q] && IntegerQ[m]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 1166

Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Di
st[e/2 + (2*c*d - b*e)/(2*q), Int[1/(b/2 - q/2 + c*x^2), x], x] + Dist[e/2 - (2*c*d - b*e)/(2*q), Int[1/(b/2 +
 q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - a*e^2, 0] && PosQ[b^
2 - 4*a*c]

Rubi steps

\begin{align*} \int \frac{1}{x^4 \left (d+e x^2\right ) \left (a+b x^2+c x^4\right )} \, dx &=\int \left (\frac{1}{a d x^4}+\frac{-b d-a e}{a^2 d^2 x^2}+\frac{e^4}{d^2 \left (c d^2-b d e+a e^2\right ) \left (d+e x^2\right )}+\frac{b^2 c d-a c^2 d-b^3 e+2 a b c e+c \left (b c d-b^2 e+a c e\right ) x^2}{a^2 \left (c d^2-b d e+a e^2\right ) \left (a+b x^2+c x^4\right )}\right ) \, dx\\ &=-\frac{1}{3 a d x^3}+\frac{b d+a e}{a^2 d^2 x}+\frac{\int \frac{b^2 c d-a c^2 d-b^3 e+2 a b c e+c \left (b c d-b^2 e+a c e\right ) x^2}{a+b x^2+c x^4} \, dx}{a^2 \left (c d^2-b d e+a e^2\right )}+\frac{e^4 \int \frac{1}{d+e x^2} \, dx}{d^2 \left (c d^2-b d e+a e^2\right )}\\ &=-\frac{1}{3 a d x^3}+\frac{b d+a e}{a^2 d^2 x}+\frac{e^{7/2} \tan ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d}}\right )}{d^{5/2} \left (c d^2-b d e+a e^2\right )}+\frac{\left (c \left (b c d-b^2 e+a c e-\frac{b^2 c d-2 a c^2 d-b^3 e+3 a b c e}{\sqrt{b^2-4 a c}}\right )\right ) \int \frac{1}{\frac{b}{2}+\frac{1}{2} \sqrt{b^2-4 a c}+c x^2} \, dx}{2 a^2 \left (c d^2-b d e+a e^2\right )}+\frac{\left (c \left (b c d-b^2 e+a c e+\frac{b^2 c d-2 a c^2 d-b^3 e+3 a b c e}{\sqrt{b^2-4 a c}}\right )\right ) \int \frac{1}{\frac{b}{2}-\frac{1}{2} \sqrt{b^2-4 a c}+c x^2} \, dx}{2 a^2 \left (c d^2-b d e+a e^2\right )}\\ &=-\frac{1}{3 a d x^3}+\frac{b d+a e}{a^2 d^2 x}+\frac{\sqrt{c} \left (b c d-b^2 e+a c e+\frac{b^2 c d-2 a c^2 d-b^3 e+3 a b c e}{\sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{\sqrt{2} a^2 \sqrt{b-\sqrt{b^2-4 a c}} \left (c d^2-b d e+a e^2\right )}+\frac{\sqrt{c} \left (b c d-b^2 e+a c e-\frac{b^2 c d-2 a c^2 d-b^3 e+3 a b c e}{\sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b+\sqrt{b^2-4 a c}}}\right )}{\sqrt{2} a^2 \sqrt{b+\sqrt{b^2-4 a c}} \left (c d^2-b d e+a e^2\right )}+\frac{e^{7/2} \tan ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d}}\right )}{d^{5/2} \left (c d^2-b d e+a e^2\right )}\\ \end{align*}

Mathematica [A]  time = 0.5444, size = 410, normalized size = 1.18 \[ \frac{\sqrt{c} \left (b^2 \left (c d-e \sqrt{b^2-4 a c}\right )+b c \left (d \sqrt{b^2-4 a c}+3 a e\right )+a c \left (e \sqrt{b^2-4 a c}-2 c d\right )+b^3 (-e)\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{\sqrt{2} a^2 \sqrt{b^2-4 a c} \sqrt{b-\sqrt{b^2-4 a c}} \left (e (a e-b d)+c d^2\right )}+\frac{\sqrt{c} \left (-b^2 \left (e \sqrt{b^2-4 a c}+c d\right )+b c \left (d \sqrt{b^2-4 a c}-3 a e\right )+a c \left (e \sqrt{b^2-4 a c}+2 c d\right )+b^3 e\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{\sqrt{b^2-4 a c}+b}}\right )}{\sqrt{2} a^2 \sqrt{b^2-4 a c} \sqrt{\sqrt{b^2-4 a c}+b} \left (e (a e-b d)+c d^2\right )}+\frac{a e+b d}{a^2 d^2 x}+\frac{e^{7/2} \tan ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d}}\right )}{d^{5/2} \left (a e^2-b d e+c d^2\right )}-\frac{1}{3 a d x^3} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(x^4*(d + e*x^2)*(a + b*x^2 + c*x^4)),x]

[Out]

-1/(3*a*d*x^3) + (b*d + a*e)/(a^2*d^2*x) + (Sqrt[c]*(-(b^3*e) + b*c*(Sqrt[b^2 - 4*a*c]*d + 3*a*e) + b^2*(c*d -
 Sqrt[b^2 - 4*a*c]*e) + a*c*(-2*c*d + Sqrt[b^2 - 4*a*c]*e))*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b - Sqrt[b^2 - 4*a
*c]]])/(Sqrt[2]*a^2*Sqrt[b^2 - 4*a*c]*Sqrt[b - Sqrt[b^2 - 4*a*c]]*(c*d^2 + e*(-(b*d) + a*e))) + (Sqrt[c]*(b^3*
e + b*c*(Sqrt[b^2 - 4*a*c]*d - 3*a*e) - b^2*(c*d + Sqrt[b^2 - 4*a*c]*e) + a*c*(2*c*d + Sqrt[b^2 - 4*a*c]*e))*A
rcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/(Sqrt[2]*a^2*Sqrt[b^2 - 4*a*c]*Sqrt[b + Sqrt[b^2 - 4*a
*c]]*(c*d^2 + e*(-(b*d) + a*e))) + (e^(7/2)*ArcTan[(Sqrt[e]*x)/Sqrt[d]])/(d^(5/2)*(c*d^2 - b*d*e + a*e^2))

________________________________________________________________________________________

Maple [B]  time = 0.035, size = 1160, normalized size = 3.3 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^4/(e*x^2+d)/(c*x^4+b*x^2+a),x)

[Out]

-1/2/(a*e^2-b*d*e+c*d^2)/a*c^2*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctanh(c*x*2^(1/2)/((-b+(-4*a*c+b^2)
^(1/2))*c)^(1/2))*e+1/2/(a*e^2-b*d*e+c*d^2)/a^2*c*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctanh(c*x*2^(1/2
)/((-b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*b^2*e-1/2/(a*e^2-b*d*e+c*d^2)/a^2*c^2*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))*c)
^(1/2)*arctanh(c*x*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*b*d-3/2/(a*e^2-b*d*e+c*d^2)/a*c^2/(-4*a*c+b^2)^(
1/2)*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctanh(c*x*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*b*e+1/(a
*e^2-b*d*e+c*d^2)/a*c^3/(-4*a*c+b^2)^(1/2)*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctanh(c*x*2^(1/2)/((-b+
(-4*a*c+b^2)^(1/2))*c)^(1/2))*d+1/2/(a*e^2-b*d*e+c*d^2)/a^2*c/(-4*a*c+b^2)^(1/2)*2^(1/2)/((-b+(-4*a*c+b^2)^(1/
2))*c)^(1/2)*arctanh(c*x*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*b^3*e-1/2/(a*e^2-b*d*e+c*d^2)/a^2*c^2/(-4*
a*c+b^2)^(1/2)*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctanh(c*x*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))*c)^(1/2)
)*b^2*d+1/2/(a*e^2-b*d*e+c*d^2)/a*c^2*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctan(c*x*2^(1/2)/((b+(-4*a*c+
b^2)^(1/2))*c)^(1/2))*e-1/2/(a*e^2-b*d*e+c*d^2)/a^2*c*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctan(c*x*2^(1
/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*b^2*e+1/2/(a*e^2-b*d*e+c*d^2)/a^2*c^2*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)
^(1/2)*arctan(c*x*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*b*d-3/2/(a*e^2-b*d*e+c*d^2)/a*c^2/(-4*a*c+b^2)^(1/
2)*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctan(c*x*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*b*e+1/(a*e^2-
b*d*e+c*d^2)/a*c^3/(-4*a*c+b^2)^(1/2)*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctan(c*x*2^(1/2)/((b+(-4*a*c+
b^2)^(1/2))*c)^(1/2))*d+1/2/(a*e^2-b*d*e+c*d^2)/a^2*c/(-4*a*c+b^2)^(1/2)*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1
/2)*arctan(c*x*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*b^3*e-1/2/(a*e^2-b*d*e+c*d^2)/a^2*c^2/(-4*a*c+b^2)^(1
/2)*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctan(c*x*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*b^2*d-1/3/a/
d/x^3+e/a/d^2/x+1/d/a^2/x*b+1/d^2*e^4/(a*e^2-b*d*e+c*d^2)/(d*e)^(1/2)*arctan(e*x/(d*e)^(1/2))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^4/(e*x^2+d)/(c*x^4+b*x^2+a),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^4/(e*x^2+d)/(c*x^4+b*x^2+a),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**4/(e*x**2+d)/(c*x**4+b*x**2+a),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: NotImplementedError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^4/(e*x^2+d)/(c*x^4+b*x^2+a),x, algorithm="giac")

[Out]

Exception raised: NotImplementedError